Nanosynthesis

A New Type of Capping Agent in Nanoscience: Metal Cations

Jiawei Liu, Shaoyan Wang, Kai Cai, Yefei Li, Zhipan Liu, Lingmei Liu, Yu Han, Hong Wang, Heyou Han,* and Hongyu Chen*

Capping agents are the essential factor in nanoscience and nanotechnology. However, the types of capping agents are greatly limited. Defying conventional beliefs, here is shown that metal cations can also be considered as capping agents for oxide nanoparticles, particularly in maintaining their colloidal stability and controlling their facets. Here the general stabilizing effects of multivalent cations for oxide nanoparticles, and the facet controlling role of Al³⁺ ions in the growth and ripening of Cu₂O octahedra, are demonstrated. This discovery broadens the view of capping agent and opens doors for nanosynthesis, surface treatment, and beyond.

In nanoscience and nanotechnology, capping agents are essential in stabilizing the ultrasmall surfaces of nanocrystals, allowing the synthesis and application of nanomaterials.^[1-10] More specifically, they control the surface charge and facets, and maintain the colloidal stability of nanoparticles.^[11-15]

Polyvinylpyrrolidone (PVP), a typical surfactant molecule, was initially used as a stabilizer in nanosynthesis, giving only spherical particles.^[16,17] As its specific affinity to nanocrystal facets was discovered, PVP served not only as a stabilizing agent but also as a means to control the growth of nanocrystals, introducing a series of new morphologies, such as Ag nanocubes^[18] and Ag nanowires.^[19] Similarly, Ag nanoplates and Pd nanoplates were successfully synthesized by using citrate^[20] and CO^[21] as capping agents, respectively. Thus, the facet-controlling ability of capping agents is of great importance

for morphological design of nanoarchitecture, a bottleneck in nanosynthesis. Notwithstanding these progresses, the type and variety of capping agents are still greatly limited, preventing broader exploration. The major role of capping agents in nanosynthesis is to control surface charge and facet growth.^[22] For these purposes, all surface-adsorbing species are potential candidates.

Metal ions have been used in nanosynthesis, but rarely as capping agents. For example, Ag^+ ions can facilitate the 1D growth of Au nanorods by forming

Au–Ag alloys;^[23] Fe³⁺ ions are important to the formation of Pt nanowire as oxidant;^[24] Al³⁺ ions are essential for the synthesis of CuSe nanocubes, but is known to only involve in the initial stage.^[25] In a pioneer work, metal ions complexed with halide ions (InCl₃, PbBr₂, KPbI₃, etc.) were regarded as a type of "inorganic capping agent" as they could bind to semiconductor nanoparticles (PbS, CdSe, CdS, etc.).^[26] The -InCl₃ or -PbI₃ moieties rendered the nanoparticles with negative changes, by capping the exposed S/Se atoms via coordination bonds.^[27] This mode of binding cannot be directly applied to oxides with the harder O as the anion.

Herein, we show that multivalent metal ions (Al^{3+} , Yb^{3+} , In^{3+} , Ca^{2+} , Pb^{2+}) have general affinity for oxide surface, often changing the initially negatively charged surface to positive charges. More specifically, Al^{3+} ions behave like a capping

Jiangsu National Synergetic Innovation Center for Advanced Materials

Dr. L. M. Liu, Prof. Y. Han

Prof. H. Wang, Prof. H. Chen

Nanjing Tech University

Nanjing 211816, P. R. China E-mail: iashychen@njtech.edu.cn

Institute of Advanced Synthesis

Advanced Membranes and Porous Materials Center

King Abdullah University of Science and Technology

Physical Sciences and Engineering Division

Thuwal 23955-6900, Kingdom of Saudi Arabia

School of Chemistry and Molecular Engineering

Dr. J. W. Liu, Dr. K. Cai, Prof. H. Y. Han State Key Laboratory of Agricultural Microbiology College of Science College of Engineering Huazhong Agricultural University Wuhan 430070, P. R. China E-mail: hyhan@mail.hzau.edu.cn Dr. J. W. Liu, S. Y. Wang, Prof. H. Chen Division of Chemistry and Biological Chemistry Nanyang Technological University Singapore 637371, Singapore Prof. Y. F. Li, Prof. Z. P. Liu Collaborative Innovation Center of Chemistry for Energy Material Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Key Laboratory of Computational Physical Science (Ministry of Education) Department of Chemistry Fudan University

Shanghai 200433, P. R. China

The ORCID identification number(s) for the author(s) of this article can be found under https://doi.org/10.1002/smll.201900444.

DOI: 10.1002/smll.201900444

agent, in terms of increasing the colloidal stability and controlling the facet growth of Cu₂O nanoparticles, giving Cu₂O octahedra enclosed by (111) facets. The adsorption of Al^{3+} ions on Cu₂O nanoparticles is supported by multiple lines of evidence. Such a discovery opens a new direction for the exploration of capping agent and facet control.

The interaction between metal cations and oxides was discovered in the synthesis of Cu_2O nanoparticles in an attempt to modify the method.^[28] The reduction of $Cu(NO_3)_2$ by NaBH₄ gave visible precipitate in about 90 s (**Figure 1a**), whereas in the presence of Al(NO₃)₃, this reaction gave clear solution without any precipitate (Figure 1b). As the net concentrations of NO₃⁻ anions are similar in the two reactions, Al³⁺ appears to be the key factor. As the degree of hydrolysis of Al³⁺ ions was only about 1.4%, the possible function of hydrolyzed hydroxides could also be ignored (Figure S1, Supporting Information). The degree of Cu_2O aggregation under different Al^{3+} concentration was characterized by dynamic light scattering (DLS). The range of nanoparticle distribution and average nanoparticle size were both reduced with the increase of Al^{3+} concentration (Figure 1c), further indicating that Al^{3+} ions are able to prevent the aggregation of Cu_2O nanoparticles.

Thus, we hypothesized that Al^{3+} ions can adsorb on the surface of Cu_2O nanoparticles, enhancing their surface charge and colloidal stability. To investigate the issue of Al^{3+} adsorption, the zeta potential of the Cu_2O nanoparticles synthesized under different concentration of Al^{3+} ions was first studied. In the presence of 0, 12.5, 25, 37.5, 50, and $62.5 \times 10^{-6} \text{ M Al}(NO_3)_3$,

Figure 1. The photographs of reaction solution for synthesizing Cu₂O nanoparticles: a) in the absence of Al³⁺, b) in the presence of Al³⁺, c) The particle size and d) zeta potential of Cu₂O nanoparticles made with different [Al³⁺]. e) The EDX, f) TEM, g) HAADF element mapping, and h) SAED of Cu₂O nanoparticles made with 50×10^{-6} M Al³⁺. The inset bar graph in Figure 1f was the particle size distribution of corresponding Cu₂O nanoparticles.

www.small-journal.com

aqueous Cu(NO₃)₂ solution was reduced by NaBH₄. After 5 min, the zeta potential of the reaction solution was directly measured. As shown in Figure 1d, with increasing concentration of Al³⁺ ions, the zeta potential of Cu₂O nanoparticles increased from +26.4 to +44 mV. In a control experiment, the aqueous Al(NO₃)₃ solution by itself with increasing concentration did not cause obvious change in zeta potential (Figure S2, Supporting Information), ruling out the possible interference of Al³⁺ in the solution. Hence, this contrast supports the adsorption of Al³⁺ ions on Cu₂O surface.

After being washed twice and redispersed in ethanol, the Al³⁺ adsorbed Cu₂O nanoparticles were able to remain unchanged for a long time. The transmission electron microscopy (TEM) image showed that there were no other impurities in product, only nanoparticles of 4.0 nm in diameter (Figure 1f and Figure S3, Supporting Information). The precipitate and its supernatant were characterized by inductively coupled plasma mass spectrometry (ICP-MS), showing that the majority of the Al³⁺ ions were adsorbed on the precipitates, which was further proved by energy dispersive X-ray spectroscopy (EDX) and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) elemental mapping. The Al to Cu atom ratio was about 1:6 in both EDX (Figure 1g) and ICP-MS (Table S1, Supporting Information). In a simplified model, a Cu₂O nanosphere of 4 nm in diameter covered with a monolayer of Al³⁺ gives a theoretical atom ratio of 1:4.4, which is roughly consistent with the above ratio. The homogeneous distribution of Al and Cu elements was shown in Figure 1g, excluding the presence of individual Al compounds in the solution.

To verify the assignment of Cu_2O in those nanoparticles, their ultraviolet-visible (UV-vis) spectra, X-ray diffraction (XRD), and selected area electron diffraction (SAED) were measured. The nanoparticles had a strong and broad UV–vis adsorption from 200–500 nm (Figure S4, Supporting Information), which agreed with the characteristic adsorptions of Cu_2O nanoparticles.^[29]

The SAED of multiple nanoparticles gave ring patterns consistent with Cu_2O scattering angles (Figure 1e). The purity and composition of the product was proved by XRD (Figure S5, Supporting Information). There were no unassigned peaks except several peaks that are characteristic of Cu_2O , ruling out the presence of crystalline impurities, significant doping, or alloying. In high resolution transmission electron microscope (HRTEM) image, the characteristic Cu_2O lattice on the edge of nanoparticles shows that there is no amorphous layer on the product surface (Figure S6, Supporting Information).

Besides, other cations (such as Fe³⁺, In³⁺, Ni²⁺, and Ca²⁺) were also able to prevent the aggregation of Cu₂O nanoparticles in similar synthesis, inspiring us to study the general adsorption effect of cations to oxide nanocrystals. Citric acid-stabilized Fe₃O₄ nanoparticles were synthesized through a capping agent exchange process from oleic acid stabilized Fe₃O₄ nanoparticles.^[30] PVP-modified MnO and ZnO nanoparticles were prepared by thermal decomposition of aqueous Mn(CH₃COO)₂ and Zn(NO₃)₂ at 95 °C.^[31] Silica nanoparticles were prepared by first hydrolyzing tetraethyl orthosilicate (TEOS) in 75% ethanol in aqueous solution, and then washed with acid solution.^[32] Capping agent-free TiO₂ nanorods were synthesized by a calcination process under 825 °C.^[33] The morphology of these nanoparticles was characterized by TEM (**Figure 2a**).

To study the interaction between Al^{3+} ions and oxide nanoparticles, varying amount of $Al(NO_3)_3$ (0, 25, 50, 75, 100, and 125×10^{-6} M) was mixed with citric acid-stabilized Fe₃O₄ nanoparticles for 1 h, and zeta potential of the resulting solution was measured. The surface charge of Fe₃O₄ nanoparticles increased from -26.9 to +17.5 mV, with a similar trend as those of Cu₂O nanoparticles (Figure 2b). Repeating experiments gave three similar traces of surface charge (Figure S7, Supporting Information), supporting the reliability of the surface treatment. Interestingly, other oxide nanoparticles such as PVPmodified MnO and ZnO, acid-treated silica, and clean surface

Figure 2. a) TEM images of different oxide nanoparticles: citric acid-stabilized Fe_3O_4 nanobeads, PVP-modified MnO (ZnO), silica nanospheres, and TiO₂ nanorods. b) Zeta potential of different oxide nanoparticles under the influence of increasing [Al³⁺]. c) Zeta potential of Fe_3O_4 nanoparticles under the influence of different cations: In^{3+} , Al^{3+} , Yb^{3+} , Pb^{2+} , Ca^{2+} , K^+ , and Na^+ .

Figure 3. a) TEM image of primary Cu₂O nanoparticles; and b) SEM image of Cu₂O octahedra obtained by direct ripening process. TEM image and SAED of c) Cu₂O nanocube seeds and d) the resulting octahedra obtained in a seeded ripening process. e) XRD pattern of Cu₂O nanocubes and octahedra. f) Schematics showing two cases of facet transformation controlled by AI^{3+} ions.

 TiO_2 nanoparticles all behaved like the Fe_3O_4 nanoparticles, with increasing surface charge at higher Al^{3+} concentrations (Figure 2b). Therefore, Al^{3+} ion does indeed have strong affinity to oxides, independent of their surface capping agents.

Then, the adsorption of other metal cations (Yb³⁺, In³⁺, Ca²⁺, Pb²⁺, K⁺, and Na⁺) to oxide was studied by the same method (Figure 2c). Citric acid-stabilized Fe₃O₄ nanoparticles were selected as a model system for the following reasons: 1) the range of surface charge variation in the Al³⁺ case is very large, facilitating the observation of trends; 2) its surface capping agent after the capping agent exchange from oil to water phase can be easily assigned, reducing the ambiguity caused by uncertain capping agents.

As shown in Figure 2c, trivalent ions (Al³⁺, Yb³⁺, and In³⁺) caused an obvious increase in zeta potential, suggesting their strong affinity to oxide. The interaction between divalent ions (Ca²⁺ and Pb²⁺) and Fe₃O₄ nanoparticles was less significant according to the moderate increase of zeta potential. Monovalent ions (K⁺ and Na⁺) barely changed the surface charge of Fe₃O₄ nanoparticles, and the slight decrease of zeta potential may be caused by the shielding effect. Therefore, cations are able to adsorb to oxide surface, especially multivalent cations. The adsorption of Al³⁺ ions to Cu₂O nanocrystals was a general effect caused by the interaction between cations and oxides.

Besides maintaining the colloidal stability of Cu_2O nanoparticles, Al^{3+} ions are also able to control their facet. In a typical synthesis, aqueous $Cu(NO_3)_2$ was reduced by NaBH₄ in the presence of Al(NO₃)₃ (Cu²⁺/Al³⁺ = 6.25). TEM images showed that the resulting nanoparticles were about 4 nm in diameter (hereafter referred to as the primary nanoparticles, **Figure 3a**). Then, the primary nanoparticles were isolated by centrifugation, redispersed in water (1/12 of the original volume, or V/12), and incubated for 12 h without shaking, giving well-dispersed Cu₂O octahedra of 170 nm in diameter enclosed by (111) facets (Figure 3b and Figure S8, Supporting Information). Normally, in a Cu₂O nanocrystal with clean surface, (100) facets are more stable than (111) facets, leading to a cube-like structure.^[34] Therefore, the octahedral structure can be attributed to the presence of Al³⁺, altering the surface energy of different facets in the Cu₂O nanocrystals.

The facet controlling ability of Al^{3+} ions was further supported by a ripening process transforming preexisting Cu₂O cubes to octahedra. First, Cu(NO₃)₂ was reduced by N₂H₄ to form nanocubes^[35] of 140 nm in diameter by a modified method, and the lattice structure of Cu₂O was proven by SAED pattern (Figure 3c). Using these nanocubes as seeds, the primary Cu₂O nanoparticles and Al(NO₃)₃ were added in sequence. After stirring for 12 h, the cubes disappeared to give mostly well-dispersed octahedra of 280 nm in diameter (Figure 3d and Figure S9, Supporting Information). The SAED pattern verified that those octahedra were also Cu₂O (Figure 3d). As known in the literature^[34,36] and shown in the X-ray diffraction (XRD) results, the (100) peak is stronger than the (111) peak in the samples of Cu₂O nanocube, whereas the

www.small-journal.com

reverse is true for the samples of Cu₂O octahedra (Figure 3e). As described above, Al³⁺ ions facilitated the direct synthesis of Cu₂O octahedra. In comparison, during ripening process, small nanoparticles were dissolved and redeposited onto larger ones. Thus, the primary Cu₂O nanoparticles were dissolved and the Cu₂O nanocube seeds grew larger. As Al³⁺ ions made the (111) facets more stable, the Cu₂O nanocubes gradually became octahedra.

There are two possible mechanisms of Al^{3+} facet control: 1) the H⁺ released by Al^{3+} hydrolysis may control the facets of Cu_2O

nanocrystals; or 2) Al^{3+} ions may directly adsorb to the surface of Cu₂O nanocrystals exerting their effect. To investigate the pH effect of Al^{3+} hydrolysis, corresponding concentrations of HNO₃ were used to replace the Al^{3+} ions in the synthesis, either during the first step reaction or added to the isolated precipitate (Figure S10, Supporting Information). Only aggregated primary nanoparticles were obtained with no sign of octahedra, ruling out pH as the key factor. Therefore, the surface energy reversal of (111) and (100) facets should be attributed to the adsorption of Al^{3+} ions to Cu₂O nanocrystals.

As showed in **Scheme 1**, metal cations with positive charge could adsorb to the oxygen atoms with partial negative charge on the oxide surface. Density functional theory (DFT) was applied to study the relative stability of (111) and (100) facets of Cu_2O nanocrystals before and after the adsorption of Al^{3+} ions, by calculating the surface energy via using the spin-polarized density functional theory calculation method with the SIESTA code (**Figure 4**).^[37] The solvation of surfaces was considered implicitly using a periodic continuum solvation

Scheme 1. The absorption of metal cations on oxide surface.

model with a smooth dielectric function. After the adsorption of Al^{3+} ions, the surface energy of (100) and (111) facets decreased from 0.5 and 0.7 J m⁻² to 0.08 and -0.12 J m⁻², respectively, indicating that Al^{3+} ions can increase the colloidal stability of Cu₂O nanocrystals. Besides, in the absence of Al^{3+} ions, the (100) facet (0.5 J m⁻²) was intrinsically more stable than the (111) facet (0.7 J m⁻²), because of only "O" termination for the (100) facet, while both "Cu", and "O" atoms terminated on the (111) facet.^[34,38] However, the reverse of their stability occurred after the adsorption of Al^{3+} . The (111) facet (-0.12 J m⁻²) became more stable than (100) facet (0.08 J m⁻²), supporting the stabilizing effects of Al^{3+} ions theoretically.

In conclusion, we found that Al^{3+} ions could stabilize Cu_2O nanoparticles and induce (111) facets, similar to the roles of capping agents. The affinity of multivalent metal cations to oxide surface suggests that this could be a general effect. This perspective may inspire new synthetic designs and controlling methods in nanosynthesis, surface treatment, and beyond.

Figure 4. The surface energy of (100) and (111) facets in Cu_2O nanocrystals before and after the adsorption of Al^{3+} ions.

General: All chemical reagents were used without further purification. Copper nitrate trihydrate [Cu(NO₃)₂·3H₂O, 99%], aluminum nitrate nonahydrate [Al(NO₃)₃·9H₂O, 99%], indium nitrate hydrate [In(NO₃)₃·xH₂O, 99%], ytterbium nitrate pentahydrate [Yb(NO₃)₃·5H₂O, 99%], lead nitrate [Pb(NO3)2, 99%], calcium nitrate [Ca(NO3)2, 99%], potassium nitrate (KNO₃, 99%), manganous acetate [Mn(CH₃COO)₂, 99%], tetraethoxysilane (TEOS), sodium chloride (NaCl, 99%), disodium hydrogen phosphate dodecahydrate (Na₂HPO₄·12H₂O, 99%), N, N-Dimethylformamide (DMF), 1,2-dichlorobenzene (DCB, 99%), polyvinyl pyrrolidone (PVP, 40000), titanium oxide nanoparticles (TiO₂ NPs, P25), and hexamethylenetetramine (HMTA) were supplied by Sigma-Aldrich. Sodium nitrate (NaNO₃, 99%) was purchased from Alfar Aesar. Ammonium hydroxide (NH3·H2O, 25%) was purchased from Sinopharm Chemical Reagent Co., Ltd. Sodium borohydride (NaBH₄, 98%) and zinc nitrate hexahydrate [Zn(NO₃)₂·6H₂O, 99%] were purchased from Strem Chemicals, Inc. Oleic acid-stabilized iron oxide nanoparticles (Fe₃O₄ NPs, d = 40 nm) were purchased from Ocean NanoTech. Ethanol (CH₃CH₂OH, 99%) was purchased from Merck. Deionized water (DI water, resistance > 18.2 M Ω cm⁻¹) was used for all experiments.

Synthesis of Cu_2O Nanoparticles: In a typical synthesis, different amount of Al(NO₃)₃ (0 and 0.4 µmol) were separately mixed with 2.5 µmol of $Cu(NO_3)_2$ solution in 7.4 mL of H₂O under continuous stirring at 0 °C for 10 min, followed by rapidly injecting 250 µL of freshmade NaBH₄ aqueous solution (1 mg mL⁻¹) and stirring for another 5 min. The yellow products were collected by centrifugation (12 000 rpm, 5 min), washed twice by ethanol, and redispersed into 600 µL of ethanol for preventing further ripening.

Characterization of the Composition of Cu_2O Nanoparticles by ICP-MS: First, 300 uL of above mentioned Cu_2O nanoparticles were separated by centrifugation (12 000 rpm, 5 min) and the supernatant was removed. Then, 0.4 mL of aqua regia was added to dissolve the precipitate and the solution was diluted into 10 mL by deionized water to make ICP-MS test. To exclude the false positive caused by residual supernatant in precipitate, 50 uL of supernatant was also treated by aqua regia and diluted into 10 mL for ICP-MS test.

Characterization of the Particle Size by DLS: In a typical synthesis, different amount of Al(NO₃)₃ (0, 0.1, 0.2, 3.2, 6.4, 9.6 µmol) were separately mixed with 2.5 µmol of Cu(NO₃)₂ solution in 7.4 mL of H₂O under continuous stirring at 0 °C for 10 min. This was followed by rapidly injecting 250 µL of fresh-made NaBH₄ aqueous solution (1 mg mL⁻¹) and stirring for another 5 min. 1 mL of reaction solution was directly taken into a sample cell to measure the particle size using DLS.

Characterization of the Zeta Potential by DLS: In a typical synthesis, different amount of Al(NO₃)₃ (0, 0.1, 0.2, 0.3, 0.4, 0.5 µmol) was separately mixed with 2.5 µmol of Cu(NO₃)₂ solution in 7.4 mL of H₂O under continuous stirring at 0 °C for 10 min, followed by rapidly injecting 250 µL of fresh-made NaBH₄ aqueous solution (1 mg mL⁻¹) and stirring for another 5 min. 1 mL of reaction solution was directly taken into a sample cell to measure the zeta potential using DLS.

Synthesis of Cu₂O Nanoparticles under Other Cations: In a typical synthesis, 0.4 µmol of FeCl₃ (InCl₃, Ni(NO₃)₂, or CaCl₂) was mixed with 2.5 µmol of Cu(NO₃)₂ solution in 7.4 mL of H₂O under continuous stirring at 0 °C for 10 min, followed by rapidly injecting 250 µL of freshmade NaBH₄ aqueous solution (1 mg mL⁻¹) and stirring for another 5 min. The yellow products were collected by centrifugation (12 000 rpm, 5 min) and washed three times with deionized water, respectively.

Synthesis of the PVP-Modified MnO (or ZnO) Nanoparticles: 40 μ mol of Mn(CH₃COO)₂ (or Zn(NO₃)₂) was mixed with 1.1 of mmol PVP in 10 mL of H₂O, followed by adding 40 μ mol of HMTA and stirring at 95 °C for 3 h. The products were collected by centrifugation (14 000 rpm, 5 min) and washed three times with deionized water, respectively.

Synthesis of the Silica Nanospheres: A modified Stöber method was applied to synthesize the silica nanospheres. 250 μ L of NH₃·H₂O (w/w = 25%) was added into 10 mL of ethanol aqueous solution (75%), followed by the addition of 300 μ L of TEOS. After stirring for 15 h,

the product was collected by centrifugation (14 000 rpm, 2 min), and washed by HNO_3 (0.1 M) for three times.

Synthesis of the Citric Acid-Stabilized Fe₃O₄ Nanobeads: In a typical synthesis, 10 mg of citric acid was added into 2 mL of DMF, followed by the addition of 2 mL of DCB and 625 μ g of oleic acid-stabilized Fe₃O₄, and mixed by vortex. After standing at 100 °C for 24 h, the products were collected by magnet and washed three times with deionized water.

Synthesis of the TiO₂ Nanorods: In a typical synthesis, 200 mg of P25 TiO₂ NPs, 200 mg of NaCl, and 200 mg of Na₂HPO₄ were mixed in a crucible. This was followed by heating in a furnace under 825 °C for 8 h. After cooling down to room temperature, the products were washed with boiled water for three times and collected by centrifugation (12 000 rpm, 5 min).

Characterization of the Zeta Potential of Oxides: In a typical synthesis, different amount of Al(NO₃)₃ (0, 25, 50, 75, 100, 125 nmol) were separately mixed with 300 μ g of citric acid-stabilized Fe₃O₄ nanobeads in 1 mL of deionized water. After standing for 60 min, the solution was directly taken into a sample cell to measure the zeta potential using DLS. The zeta potential of other oxides such as PVP-modified MnO (or ZnO), silica nanospheres, and TiO₂ nanorods were measured by replacing citric acid-stabilized Fe₃O₄ nanobeads into above oxides. The zeta potential of citric acid-stabilized Fe₃O₄ nanobeads under other kind of cations were also measured by replacing Al³⁺ ions into In³⁺, Yb³⁺, Pb²⁺, Ca²⁺, K⁺, and Na⁺ ions.

Synthesis of the Cu₂O Octahedra: In a typical synthesis, 0.4 µmol of Al(NO₃)₃ was mixed with 2.5 µmol of Cu(NO₃)₂ solution in 7.4 mL of H₂O under continuous stirring at 0 °C for 10 min. Followed by rapidly injecting 250 µL of fresh-made NaBH₄ aqueous solution (1 mg mL⁻¹) and stirring for another 5 min. The yellow products were collected by centrifugation (12 000 rpm, 5 min) and redispersed into 600 µL of deionized water. After standing for 12 h, the products were collected by centrifugation (2000 rpm, 2 min), washed once by 200 µL of deionized water, and redispersed into 200 µL of deionized water for storing.

Synthesis of the Cu₂O Nanocubes: In a typical synthesis, 2.5 µmol of Cu(NO₃)₂ solution in 7.4 mL of H₂O under continuous stirring at 25 °C for 10 min,followed by adding 0.01 µmol of N₂H₄ aqueous solution drop by drop and stirring for 5 min. The yellow products were collected by centrifugation (12 000 rpm, 5 min) and redispersed into 600 µL of deionized water.

Ripening in the Presence of Nanocubes: In a typical synthesis, Cu₂O nanoparticles were prepared by mixing 2.5 μ mol of Cu(NO₃)₂ solution in 7.4 mL of H₂O under continuous stirring at 0 °C for 10 min, followed by rapidly injecting 250 μ L of fresh-made NaBH₄ aqueous solution (1 mg mL⁻¹) and stirring for another 90 s. The yellow products were collected by centrifugation (12 000 rpm, 5 min) and redispersed into 500 μ L of deionized water.

Then, 100 μL of as-prepared Cu₂O nanoparticles were mixed with 300 μL of as-prepared Cu₂O nanocubes. This was followed by adding 5 μL of Al(NO₃)₃ aqueous solution (10× 10⁻⁶ M) and standing for 12 h. The products were collected by centrifugation (2000 rpm, 2 min), washed once by 200 μL deionized water, and redispersed into 200 μL deionized water for storage.

DFT Calculation: All DFT calculations for geometry relaxation and surface energy were carried out using numerical atomic orbital basis sets and Troullier–Martins norm-conserving pseudopotentials as implemented in SIESTA package.^[34] The geometry optimization was based on the exchange-correlation functional GGA-PBE.^[36] The geometry convergence criterion was set as 0.08 eV Å⁻¹ for the maximal component of force. The k-point mesh utilized was up to (8 × 4 × 1) in the Monkhorst–Pack scheme. The surface energies (γ is calculated by following Equation (1)

$$\gamma = \left(E_{AI(OH),/Cu_2O} - E_{AI(OH),} - E_{Cu_2O}\right)/A \tag{1}$$

where $E_{Al(OH)_3/Cu_2O}$, $E_{Al(OH)_3}$, and E_{Cu_2O} are total energies for Al^{3+} adsorbed Cu₂O surface, Al(OH)₃ molecule, and bulk Cu₂O, respectively. A is area of Cu₂O surface.

SCIENCE NEWS _____ www.advancedsciencenews.com

DVANCED

Supporting Information

Supporting Information is available from the Wiley Online Library or from the author.

Acknowledgements

H.C. acknowledges the financial support from MOE (RG 14/13) of Singapore, National Natural Science Foundation of China (No. 21673117), recruitment Program of Global Experts, Jiangsu Provincial Foundation for Specially-Appointed Professor, start-up fund at Nanjing Tech University (39837102), and SICAM Fellowship from Jiangsu National Synergetic Innovation Center for Advanced Materials. H.H. appreciates Science and Technology Major Project of Guangxi (Gui Ke AA18118046), National Key R&D Program of China (2016YFD0500706), National Natural Science Foundation of China (21778020), and Scietch Innovation Foundation of Huazhong Agriculture University (2662017PY042, 2662018PY024) for financial supports. J.L. thanks the support from China Scholarship Council (CSC) program (No. 201606760007).

Conflict of Interest

The authors declare no conflict of interest.

Keywords

aluminium ion, capping agent, cuprous oxide, facet control, metal $\ensuremath{\mathsf{cations}}$

Received: January 25, 2019 Revised: March 17, 2019 Published online:

- [1] Z. Niu, Y. Li, Chem. Mater. 2014, 26, 72.
- [2] C.-Y. Chiu, Y. Li, L. Ruan, X. Ye, C. B. Murray, Y. Huang, Nat. Chem. 2011, 3, 393.
- [3] Q. Guo, S. Mo, P. Liu, W. Zheng, R. Qin, C. Xu, Y. Wu, B. Wu, N. Zheng, Sci. China: Chem. 2017, 60, 1444.
- [4] F. Saleem, Z. Zhang, B. Xu, X. Xu, P. He, X. Wang, J. Am. Chem. Soc. 2013, 135, 18304.
- [5] Y. Feng, J. He, H. Wang, Y. Y. Tay, H. Sun, L. Zhu, H. Chen, J. Am. Chem. Soc. 2012, 134, 2004.
- [6] Y. Feng, S. Xing, J. Xu, H. Wang, J. W. Lim, H. Chen, Dalton Trans. 2010, 39, 349.
- [7] Y. Feng, Y. Wang, J. He, X. Song, Y. Y. Tay, H. H. Hng, X. Y. Ling, H. Chen, J. Am. Chem. Soc. 2015, 137, 7624.
- [8] K. Cai, Z. Lv, K. Chen, L. Huang, J. Wang, F. Shao, Y. Wang, H. Han, *Chem. Commun.* 2013, 49, 6024.

- [9] K. Cai, J. Liu, H. Zhang, Z. Huang, Z. Lu, M. F. Foda, T. Li, H. Han, Chem. - Eur. J. 2015, 21, 7556.
- [10] J. He, Y. Wang, Y. Feng, X. Qi, Z. Zeng, Q. Liu, W. S. Teo, C. L. Gan, H. Zhang, H. Chen, ACS Nano 2013, 7, 2733.
- [11] Q. Li, S. Ji, M. Li, X. Duan, Sci. China Mater. 2018, 61, 1339.
- [12] T. Ling, J. J. Wang, H. Zhang, S. T. Song, Y. Z. Zhou, J. Zhao, X. W. Du, Adv. Mater. 2015, 27, 5396.
- [13] Y. Yin, A. P. Alivisatos, *Nature* **2005**, *437*, 664.
- [14] K. Cai, W. Zhang, J. Zhang, H. Li, H. Han, T. Zhai, ACS Appl. Mater. Interfaces 2018, 10, 36703.
- [15] H. Wang, X. Song, C. Liu, J. He, W. H. Chong, H. Chen, ACS Nano 2014, 8, 8063.
- [16] H. H. Huang, X. P. Ni, G. L. Loy, C. H. Chew, K. L. Tan, F. C. Loh, J. F. Deng, G. Q. Xu, *Langmuir* **1996**, *12*, 909.
- [17] H. Hirai, J. Macromol. Sci. A 1979, 13, 633.
- [18] Y. G. Sun, Y. N. Xia, Science 2002, 298, 2176.
- [19] Y. Sun, Y. Xia, Adv. Mater. 2002, 14, 833.
- [20] J. E. Millstone, S. J. Hurst, G. S. Metraux, J. I. Cutler, C. A. Mirkin, Small 2009, 5, 646.
- [21] X. Q. Huang, S. H. Tang, X. L. Mu, Y. Dai, G. X. Chen, Z. Y. Zhou, F. X. Ruan, Z. L. Yang, N. F. Zheng, *Nat. Nanotechnol.* **2011**, *6*, 28.
- [22] Y. Wang, J. He, C. Liu, W. H. Chong, H. Chen, Angew. Chem., Int. Ed. 2015, 54, 2022.
- [23] B. Nikoobakht, M. A. El-Sayed, Chem. Mater. 2003, 15, 1957.
- [24] J. Y. Chen, T. Herricks, Y. N. Xia, Angew. Chem., Int. Ed. 2005, 44, 2589.
- [25] W. Li, R. Zamani, M. Ibáñez, D. Cadavid, A. Shavel, J. R. Morante, J. Arbiol, A. Cabot, J. Am. Chem. Soc. 2013, 135, 4664.
- [26] D. N. Dirin, S. Dreyfuss, M. I. Bodnarchuk, G. Nedelcu, P. Papagiorgis, G. Itskos, M. V. Kovalenko, J. Am. Chem. Soc. 2014, 136, 6550.
- [27] J. Owen, Science 2015, 347, 615.
- [28] J. Zhang, J. Liu, Q. Peng, X. Wang, Y. Li, Chem. Mater. 2006, 18, 867.
- [29] S. Deki, K. Akamatsu, T. Yano, M. Mizuhata, A. Kajinami, J. Mater. Chem. 1998, 8, 1865.
- [30] W. H. Chong, L. K. Chin, R. L. S. Tan, H. Wang, A. Q. Liu, H. Chen, Angew. Chem., Int. Ed. 2013, 52, 8570.
- [31] H. Sun, J. He, J. Wang, S.-Y. Zhang, C. Liu, T. Sritharan, S. Mhaisalkar, M.-Y. Han, D. Wang, H. Chen, J. Am. Chem. Soc. 2013, 135, 9099.
- [32] W. Stöber, A. Fink, E. Bohn, J. Colloid Interface Sci. 1968, 26, 62.
- [33] B. Liu, H. M. Chen, C. Liu, S. C. Andrews, C. Hahn, P. Yang, J. Am. Chem. Soc. 2013, 135, 9995.
- [34] W. Z. Wang, G. Wang, X. S. Wang, Y. Zhan, Y. Liu, C. L. Zheng, Adv. Mater. 2002, 14, 67.
- [35] D.-F. Zhang, H. Zhang, L. Guo, K. Zheng, X.-D. Han, Z. Zhang, J. Mater. Chem. 2009, 19, 5220.
- [36] M. D. Susman, Y. Feldman, A. Vaskevich, I. Rubinstein, ACS Nano 2014, 8, 162.
- [37] M. S. José, A. Emilio, D. G. Julian, G. Alberto, J. Javier, O. Pablo, S.-P. Daniel, J. Phys.: Condens. Matter 2002, 14, 2745.
- [38] H. Bao, W. Zhang, D. Shang, Q. Hua, Y. Ma, Z. Jiang, J. Yang, W. Huang, J. Phys. Chem. C 2010, 114, 6676.